EXPLORATION REPORT
ON THE EDUM BANSO
GOLD PROJECT

FROM AUGUST 2007
TO JANUARY 2008

FOR

XTRA-GOLD GHANA LIMITED

Volume I of II
Contents

Volume I of II

List of Figures ... I
List of Tables .. 1

Volume I ... 1

1 Introduction ... 1

2 General Information .. 4

2.1 Location and Access ... 4

2.2 Access .. 5

2.3 Infrastructure and Population ... 5

2.4 Drainage and Relief ... 5

2.5 Vegetation and Climate ... 6

2.6 Land Tenure ... 6

2.7 Environmental and Social Issues ... 6

3 History of Mining .. 7

4 Geology .. 11

4.1 Regional Geology and Mineralization ... 11

4.2 Geology of South-Western Ghana ... 13

4.3 Local Geology .. 15

4.4 Property Geology .. 18

5 Exploration .. 20

5.1 Introduction ... 20

5.2 Gridding .. 20

5.3 Soil Sampling ... 23

5.3.1 Introduction ... 23

5.3.2 Analytical Procedures ... 23

5.3.3 Soil Results ... 23

5.4 Deep Auger ... 26

5.4.1 Introduction ... 26

5.4.2 Analytical Procedures ... 26

5.4.3 Results ... 26

5.5 Trenching ... 29

5.5.1 Introduction .. 29

5.5.2 Trench Geology .. 30

5.5.3 Results ... 30

5.6 Rock Sampling ... 33

5.7 Field Quality Control ... 34

6 Conclusion .. 35

7 Recommendations ... 35

8 Exploration Program Proposal .. 38

Volume II of II

Appendix I - Soil Data
Appendix II - Hand Auger Data
Appendix III - Trench Data
Appendix IV - Rock Chips Data
Appendix V - Field Quality Control Data
List of Figures

Figure 1: Edum Banso Concession in Relation to GSR Properties .. 3
Figure 2: Location Map ... 4
Figure 3: Newmont 2004 Soil Geochemistry .. 9
Figure 4: Newmont 2004 Stream Sediments .. 10
Figure 5: Regional Geology on Ghana in relation to West Africa .. 12
Figure 6: The Main SW Ghana Gold Belts .. 14
Figure 7: Geology of the Location and Main Deposits or Occurrences ... 16
Figure 8: Edum Banso Gridlines ... 22
Figure 9: Interpreted Geology with Soil Geochemistry Results .. 25
Figure 10: Interpreted Geology with Deep Auger Results .. 27
Figure 11: Interpreted Geology with Trench Location/Grade ... 32
Figure 12: Interpreted Geology with Rock Chip Grade ... 33
Figure 13: Prospective Areas over Interpreted Potassium Image .. 36
Figure 14: Prospective Areas over Interpreted Aeromagnetic Image ... 37

List of Tables

Table 1: Edum Banso Concession Pillars .. 5
Table 2: Summary of TAL Field Activities .. 20
Table 3: Location of Survey Beacons .. 21
Table 4: Location of Edum Banso Trenches .. 29
Table 5: Showing summary of Trench Results ... 31
Volume I

1 Introduction

The Edum Banso Concession area is currently being prospected by Xtra Gold Mining Ghana Limited, which is a joint venture between Xtra-Gold Mining Ghana Limited of Canada and Adom Mining Limited of Ghana. The area is covered by a two year prospecting licence which will expire in June 2008. The licence was first issued to Adom Mining Limited on the 8th day of May 1991 with a right of extension. The prospecting licence LVB 2324/91 is registered with the land registry number 1130/1991.

The proposed Prospecting Licence Area is about 20.60 km² the greater part lying on Field Sheets 0502C3 in the Western Region of Ghana. The concession lies between the geographical coordinates of latitude 5° 00'N to 5° 05'N and longitudes 1° 53'W to 1° 56'W. The Edum Banso concession is located within Mpohor Wasa East District of the Western Region. The concession is about 35km north-west of Takoradi.

Edum Banso project is located in close proximity to Golden Star’s (GSR) Hwini – Butre and Beno – Subriso properties (See Figure 1) not only in terms of geographical position but more importantly in terms of regional structural setting. The north – south trending Hwini – Butre property extends along the eastern flank of the Edum Banso concession (~0.5 – 2.0 km east); with the project’s two main gold vein systems, the Adoikrom and Father Brown zones, being located ~ 2 km and ~ 4 km southwest of Edum Banso, respectively. The Subriso block of the Beno concession is located ~ 10 km NNE of the Edum Banso concession. (*Hwini-Butri Gold Belt. Unpublished by Xtra-Gold*)

The Edum Banso project Concession is located in an area of Birimian metasediments, metavolcanics and intrusive rocks, which are part of the Ashanti Belt, which extends over 250 km from Axim on the coast northeast to Konongo in the north and is the most intensively mined area in Ghana. The Concession covers the Eastern margin of the massive Granitoid Complex which are most common in the western part of the property with extensive structural features, the most dominant being a NNE to N-S trending fracture system.

This report describes geological exploration carried out by Torkornoo Associates Limited for Xtra-Gold Ghana Limited on the Edum Banso concession. The work covered soil geochemistry survey supplemented by rock chip prospecting, limited infill soil sampling, hand auger sampling and trenching.

A team of three geologists, seven geological technicians, 32 samplers/line-cutters and 40 trenchers commenced work on 1st August 2007 and closed the field operations on 15th December 2007 for Christmas. The team reconvened to complete the work on 7th January 2008.
Work during the period was focused on gridding, geochemical soil sampling, limited amount of prospecting and trenching. The detailed geochemical soil sampling identified little gold in soil anomalies in excess of 50ppb.

From the limited amount of work done to date on the Edum Banso concession, the geochemical soil results has outlined one major gold anomaly about 8km long and 600m wide trending in the NNE direction. Within this corridor, a target zone was identified along the margins of of the Birimian Metavolcanics and the Mpohor Complex.

Three successive soil values within the target area returned the following gold grades: 1099, 793 and 606 ppb respectively. Auger over these soil values returned a single grade of 1.42g/t from the saprolite zone. To the south along the Mpohor Complex Trench EBTR05 returned gold value of 1.23g/t over 4m. Further south, prospecting produced a rock chip (quartz vein), which returned a gold grade of 3.6g/t.

Based on the results of the augering, trenching and the prospecting, a second stage of trenching, augering coupled with detailed geological mapping has been proposed.

The area of the concession shall be retained and none of the areas would be shed off at this stage as the outlining of anomalous zones needs to be intensified. The Company plans to apply for a renewal and extension of the Edum Banso concession. The Company is not ready to shed property at this time, in part because not all of the gold in soil targets outlined on the first work program has been sufficiently investigated. The work conducted to date has also allowed for new targets to be identified, and further targets are expected to be identified over the course of the proposed work program, which covers the next two years.

This report is in two volumes. Volume I covers the text in this report and all the field log sheets and assay reports are carried as appendices in the Volume II.
Figure 1: Edum Banso Concession in Relation to GSR Properties
2 General Information

2.1 Location and Access

The Edum Banso Concession in Figure 2 is located in the Mpohor Wasa East District of the Western Region of Ghana. The concession is about 270km west of Accra, and 35km north of Takoradi a major commercial centre. The concession covers an area of about 20.6sq. Km. The concession is at the contact between the Birimian metasediments, metavolcanics and intrusive rocks which are part of the Ashanti Belt.

Figure 2: Location Map
The concession area of Xtra-Gold Mining Limited is situated within the survey field sheet 0502c3 and 0402a1 and bounded by following co-ordinates (Table 1).

Table 1: Edum Banso Concession Pillars

<table>
<thead>
<tr>
<th>Pillar</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1° 54' 40"</td>
<td>5° 03' 59"</td>
</tr>
<tr>
<td>P2</td>
<td>1° 54' 15"</td>
<td>5° 03' 55"</td>
</tr>
<tr>
<td>P3</td>
<td>1° 54' 03"</td>
<td>5° 04' 33"</td>
</tr>
<tr>
<td>P4</td>
<td>1° 53' 48"</td>
<td>5° 04' 27"</td>
</tr>
<tr>
<td>P5</td>
<td>1° 53' 48"</td>
<td>5° 00' 00"</td>
</tr>
<tr>
<td>P6</td>
<td>1° 56' 00"</td>
<td>5° 00' 00"</td>
</tr>
<tr>
<td>P7</td>
<td>1° 55' 27"</td>
<td>5° 01' 53"</td>
</tr>
<tr>
<td>P8</td>
<td>1° 55' 05"</td>
<td>5° 01' 49"</td>
</tr>
</tbody>
</table>

2.2 Access

The concession is accessible by a good road from Apowa on the Takoradi to Tarkwa highway. The road runs through Mpohor in the south, to Edum Banso in the north, and it carries on through the Benso Oil Palm Plantation (BOPP). From Mpohor to other areas within the concession can be accessed by a rough field tracks negotiable by 4 x 4 vehicles, and walking trails through farms, jungle and oil palm or rubber plantations.

2.3 Infrastructure and Population

The concession area is highly populated with groupings of villages scattered within the concession area. Edum Banso, Edum Domnase and Trebuomu are the three biggest settlements in the concession area. Edum Banso and Domnase are connected to the national power grid. The principal economic activities in the concession area are limited to subsistence farming and trading.

Takoradi is the nearest commercial centre with a new thermal plant with a 250 MW capacity, hospital, post office, court, police station, Naval and commercial seaports. A local air force base has a runway that is accessible to light to medium size fixed wing and jet aircraft.

2.4 Drainage and Relief

The Concession area is drained by Butre, Eburi Ntra river systems and small tributaries (Ntrawa, Aboabaka, etc.). The area as a whole has a trellised drainage pattern in which a system of parallel and sub-parallel rivers are aligned almost on the strike of the structural formations in a general way and make occasional turns to cross the strike. The trellised drainage pattern is made more prominent for the Butre drainage area by the underlying granitoid, which are more resistant to weathering.

The Concession area is undulating, with modest relief of 30 to 100 m. Topographic relief in the north-western part is 75 to 100 m above valley floors, which are approximately 100 m above sea level. In the southern part of the Concession, topographic relief is flat, low-
lying flood plains. In general, the topography varies considerably, with round to flat-topped hills, low-lying flood plains and swamps.

2.5 Vegetation and Climate

The low-lying valleys are marshy and cleared farmlands carrying both subsistence and cash crops such as palm, cassava, bananas, oil palm, and vegetables. Areas of slightly hilly relief tend to have retained some remnant tropical vegetation. The north-western part of the New Xtra-gold concession contains part of the BOPP oil plantation.

The climate is typically wet tropical (equatorial) with daily temperatures ranging on an annual basis, between 30° - 36°C, maxima and 15° - 20°C minima. Rainfall for most of the Western Region of Ghana is in the range 1500mm - 2000mm annually. There is a main wet season from March to July, peaking in May-June, and a minor wet season from September to November, peaking in October.

2.6 Land Tenure

The Edum Banso Concession is a Prospecting License, number LVB 2324/91 which was initially registered in 1991 with the land registry No 1130/1991. This is held by Adom Mining Limited which is due for renewal in June 2008.

2.7 Environmental and Social Issues

Exploration work undertaken on the concession during the reporting period was performed with the objective of causing minimal damage to the environment, with areas disturbed being fully rehabilitated. Care was taken to ensure that all sample pits and trenches were properly backfilled in and top soil replaced. The use of machinery was almost negligible and the local environment was left undisturbed. Footpaths were used for the soil sampling program. Soil sampling on the concession was purely manual. Rampant felling of trees was avoided by offsetting our lines. Flagging tapes were also used to avoid destruction of trees and food crops. Wood scrapes from sawmills were used as pegs instead using bush cuts.

Adequate measures were taken to protect the working environment in line with the Ghana Government’s law on safety and environmental considerations. Newly employed workers were provided with safety gadgets like boots, protective helmets, raincoats, etc, to ensure their safety.

Prior to commencing any activities on the concession, meetings were held with Chiefs, Elders and the people of the settlements of Edum Banso, Edum Dominase and Trebuomu, with customary ceremonies and processes being observed, in order to ensure a harmonious work environment and demonstrate respect for local customs. A broad outline of the intended work program was provided to the communities in each case, and local labourers were recruited to assist with the fieldwork.
3 History of Mining

Mpohor area has historical record for artisanal mining which pre-dates the colonial era. Much of the early European interest in the region was focused on the coastal areas and as far inland as Tarkwa and Prestea. In the wild gold rush days of 1898-1901, several small concessions were located in the Dabokrom/Mpohor area, which had obviously been known as a significant source of alluvial and probably eluvial gold. It is likely that interest in the bedrock gold occurrences started at this time but the first well-established underground exploration work would occur 30 years later in the gold rush of the 1930s. Geological Survey geologists visited the area on several occasions (Annual Reports, GSGS 1932/33, 1933/34; Archive Rept #10, 1991) and the area is well described by Junner (1935). The exploration work in the early 1930s included extensive trenching, an inclined shaft and a vertical shaft; in all cases, the interest was on shallow-dipping, fairly high-grade but relatively narrow quartz veins. By the late 1930s, it appears that exploration work had ceased and although some diamond drilling was carried out in the late 1940s (Mines Dept Annual Report 1946-47). In the 1980s, the dramatic increases in the price of gold resulted in quite extensive, illegal galamsey mining in the Mpohor area.

In the late 1980s, a local group, headed by Nana F. K. Hayford, successfully applied for a large prospecting concession (150km²) covering many known prospects between Mpohor and the railway line south of Banso. This group (BD Goldfields) negotiated a joint venture with a Danish company who carried out considerable reconnaissance exploration work, which revealed extensive stream and soil geochemistry anomalies over a large area immediately east and southeast of Mpohor. There was a subsequent change in the holding company (Hwini-Butre Minerals), who entered a joint venture with Placer Outokumpu Exploration in 1993. Placer reviewed the earlier exploration data and carried out a very limited diamond and RC drilling program (3 DD holes; 15 RC holes to 40-50m) at Dabokrom to test the potential for a very large, low-grade open-pit target. Although results confirmed indications of significant gold mineralization, Placer concluded that the target would not be sufficiently large to meet their size standards and they dropped the option. In 1994, a Norwegian group (Mindex) bought controlling interest in Hwini-Butre Minerals and, in the following year, they formed a joint venture with St Jude Resources of Vancouver, Canada. Since then, St Jude has carried out extensive soil geochemistry, geophysics, trenching, pitting and diamond drilling. (Griffis et. al, 2002 “Gold Deposits of Ghana” p 195)

Airborne geophysical data flown by Aerodat during the period 1994 – 1996 and interpreted by Griffis et. al. has produced a new geology map. It shows mostly Birimian
metasediments to the eastern half of the concession and Dixcove suite granite intrusive dominates the western half.

In 1991, a local group (Adom Mining Limited) was granted the Edum Banso licence and in 2004, Newmont, entered into an optional Agreement with Adom and Newmont took over the management of the Edum Banso Project. The initial work by Newmont included stream sediments soil sampling and prospecting using a grid 400m line spacing and sample intervals of 50m along the gridlines. Approximately 24 stream sediments samples, 13 rock chips samples and 1,946 soil samples were analysed for gold. Although the rock chips returned very disappointing results, the stream sediments returned values ranging from 11ppb to 216ppb. The soil sampling returned gold values ranging from <1ppb to 1278ppb. Both the streams and soil results are presented in Figure 3 and Figure 4 respectively.

Although the Newmont work was successful in outlining some major gold-in-soil anomalies, the anomalies were somewhat below expectations and Newmont concluded that there were no clear targets that would meet their +1 million ounce threshold. Consequently, Newmont relinquished their interest in Edum Banso Project in 2004.
Figure 3: Newmont 2004 Soil Geochemistry

XTRA-GOLD GHANA LIMITED

EDUM BAHSO PROJECT
WESTERN REGION GHANA
NEWMONT 2004
Soil Geochemistry Results

Torkornoo & Associates Ltd;
www.torkornoo.com
Figure 4: Newmont 2004 Stream Sediments

Stream sample point/grade in ppb

XTRA-GOLD GHANA LIMITED

EDUM BANSO PROJECT
WESTERN REGION GHANA
NEWMONT 2004
Stream Sediments Results

Torkornoo & Associates Ltd;
www.torkornoo.com
4 Geology

4.1 Regional Geology and Mineralization
Stratigraphically, Ghana lies within the West African Precambian Shield. Gold producing Precambian rocks of the Eburnean tectonic province (2.17-2.18 billion years) underlie much of the south-western and the north-eastern half of Ghana, as well as parts of Cote D’Ivoire, Mali and Burkina Faso (See Figure 5).

The Precambian in Ghana is dominated by the Birimian which is unconformably overlain by the Tarkwaian. The former is made up of a meta volcanic (greenstone) type lithologies, and meta sediments believed to have formed from erosion of the rising volcanic belts, resulting in the formation of argillites, turbidites, and fine grained tuffs of relatively deep quiet water basins. The later is a fossil placer similar to the Witwaterstrand and Transvaal “banket reefs” of South Africa.

The regional structural fabric of the Eburnean of West Africa are characterized by NE-SW trending belts bounded by major regional structures which probably represent early extension-related faults that controlled the location and deposition of sediments in both the Birimian and Tarkwaian basins. Subsequent reactivation of these faults during a compressional tectonics phase resulted in thrusting and folding evident in the Tarkwaian rock units. Late right lateral transgressional tectonics has resulted in the kinks, jogs and sigmoidal geometries evident along the major gold belts.
Figure 5: Regional Geology on Ghana in relation to West Africa
4.2 Geology of South-Western Ghana

The geology and mineralization of the South-western Ghana and the Concession area are well described in reports written by Dr. Robert J. Griffis and Mr. George Flach. This report contains salient parts of the regional, local and the property geology. (Watts, Griffis and McOuat Limited 2004, “Geology And Mineral Resources Of Thehwini-Butre Concession, Ghana for St. Jude Resources Ltd”)

Early mapping of the region recognized the existence of relatively long, narrow NE-trending belts consisting of Precambrian (Lower Proterozoic) metamorphosed volcanic extrusives, pyroclastics and volcaniclastic sediments. Located between these belts are broad sedimentary basins, composed predominantly of marine clastic sediments with variable amounts of volcaniclastic units. Intrusive rocks (granitoid composition) are found both in the belts and in the basins, however, it is generally accepted that the intrusions are distinct between the two.

The Man Shield underlays the southern third of the West African Craton, and in Ghana is generally composed of Birimian Supergroup and Tarkwaian Group rocks. It is believed that the basin sediments are generally older than the belt rocks, hence the Birimian is divided into Lower (Early) and Upper (Late) sequences. These units were subjected to folding, intrusions and metamorphism during the Eburnean orogeny, approximately 2.1 billion years ago.

The Birimian Supergroup consists of belts of primarily basic metavolcanic rocks. These belts are folded and fairly evenly spaced and essentially parallel to each other, in a northeast to southwest trend. Three main belts are recognized (from the northwest to the southeast); Sefwi-Bibiani, Ashanti and Kibi-Winneba (Figure 6) and are separated by large sedimentary basins. Pyroclastic deposits associated with the basic lavas are chemically similar to tuffs located in the contiguous basins. Hinge line zones that formed along the broad boundaries between basin and belt environments are characterized by interbedded sedimentary and volcaniclastic units and contain chemical depositions of cherts, carbonates, magniferous deposits, carbon and sulphides, all of which can be important associated features for economic gold mineralization.

The metavolcanic rocks of the Birimian Supergroup are predominantly basaltic/andesitic flows and are interbedded with metasediments. The metasediments and metavolcanic clastics are comprised of volcaniclastic rocks, turbidite-related wackes, argillic and pelitic rocks and chemical sediments, with the boundaries between different rock types often being gradational. The Tarkwaian Group rocks, preserved mainly in the Ashanti Belt (predominantly north of Tarkwa and east of Kumasi), are composed of clastic sediments, mostly quartzite, arkose, conglomerate and phyllite.
Figure 6: The Main SW Ghana Gold Belts
There are three very broad types of gold deposits in Ghana; recent unconsolidated placers, ancient paleoplacers in Tarkwaian conglomerates, and vein systems hosted primarily in Birimian metasediments and, to a lesser extent, Birimian volcanics/volcaniclastics. Historically, most of the gold production in the country has been from these high grade vein systems, the most important of the deposits being the famous Obuasi gold mine.

Although most of the Birimian deposits developed in recent years are within or on the margins of the Ashanti Belt, considerable success has been achieved elsewhere. The northern Birimian belts and basins have received little attention in the past, however, this is changing as a result of the recognition of major regional structures and associated known historical gold prospects. These relatively new deposits include the Bibiani (Ashanti) operation in the Sefwi belt, and on the western side of the Sefwi Belt at Yamfo (Normandy Mining Ltd.), where a multi-million ounce resource, contained within numerous deposits, is being mined. Also of interest is the Manso Nkwanta-Asankrangwa Gold Belt, which occurs well out in the Kumasi basin, between the Sefwi and Ashanti Belts. In this area, favourable structures have resulted in many gold prospects being discovered, including Resolute Ltd.’s large open pit Nkran Hill stockwork system, the Obotan Mine.

4.3 Local Geology

The southern portion of the Ashanti Belt is comparatively wide (+60 km) in comparison to areas further north, and is dominated by several narrow bands of Birimian mafic extrusives, intruded by extensive belt-type granitoids. Figure 7 illustrates the local geology and shows the location of the main deposits/occurrences. The eastern margin of the belt features interbedded volcanogenic sediments, volcaniclastics and mafic volcanics. The western margin of the belt features a band of more highly metamorphosed volcanics that attracted considerable interest when a broad quartz stockwork system with disseminated pyrite and arsenopyrite in coarse volcanlastic host rocks was discovered (Salman prospect, 15 km north of the coastal area of Axim). This deposit is very similar to the occurrences at Bogosu to the north, and has common features with many of the other mesothermal vein and disseminated deposits throughout the belt.

The main volcanism in the area was concentrated along deep-seated fracture systems more or less parallel to the belt. The slightly younger, fault-bounded Tarkwaian sediments were largely confined to the interior and margins of the belt at a time when the belts had become emergent volcanic chains with considerable ongoing structural activity. After the Tarkwaian sediments were largely deposited, it is believed that there was a major dilational stage during which the mafic sills and dykes (epidiorites) intruded many areas of the volcanic/sedimentary chain of highland areas. Ongoing compressional activity resulted in fairly intense folding and faulting within the belts and the adjacent basins, and was accompanied by quite high regional metamorphism which also affected the mafic intrusions. Immediately east of Axim, there is a fairly extensive exposure of Tarkwaian clastics, and a very small sliver of similar units is preserved along the coast just east of Cape Three Points.
Figure 7: Geology of the Location and Main Deposits or Occurrences
There are also indications of other narrow exposures of Tarkwaian units further north, but as yet these have not been fully defined and do not appear to be substantially different than surrounding Birimian units. The Butre volcanic branch, and the adjacent Dixcove intrusive complex to the west, host several sizeable manganese occurrences. Those occurrences enclosed by the intrusives appear to be part of a volcaniclastic sequence of metasediments.

The general area hosts quite a variation of intrusive phases related to numerous plutonic complexes of largely intermediate to felsic composition. The Birimian Supergroup in the Takoradi area is intruded by porphyritic Dixcove Granitoids, which are mainly composed of hornblende granite, and hornblende granodiorite with gradations into quartz diorite and hornblende diorite. The growing regional database on radiometric age-dating indicates that the volcanics and belt-type (Dixcove) intrusives are more or less coeval, and were mainly developed from 2,150 to 2,200 Ma. Dating of these granitoids in the immediate Dixcove vicinity yielded an age of about 2,170 Ma. Slightly younger ages (about 2,150 Ma) were yielded from samples of a foliated granodiorite in a rock quarry north of Sekondi.

Hydrothermal activity produced extensive epigenetic gold mineralization that appears to have post-dated most, if not all, of the regional metamorphism and much of the early structural activity. Alluvial and bedrock deposits from this area have been worked for generations by local miners and early European junior mining groups at several known prospects such as Akanko, Akoko and Kanyankaw. The majority of occurrences in the region appear to consist of very narrow, often discontinuous, quartz veins hosted in metavolcanic units. Grades can be extremely high, but the gold distribution is usually erratic. Many of the prospects appear to line up along NNE-trending structures.

In the past, it was not generally recognized that regional granitoids were particularly favourable host rocks for gold deposits. This was largely due to a lack of exploration and in recent years, a number of important prospects hosted by intrusions have been discovered. The Dixcove Granitoids are known to contain gold in the Concession area, since gold is being panned from eluvial zones directly above unweathered Dixcove rocks. There is evidently a direct relationship between gold deposition and the intrusion of the Dixcove Granitoids.

This general area also features many NE-trending Paleo-proterozoic mafic sills and dykes as well as several more substantial mafic complexes with gabbro, pyroxenite and diorite phases. The Mpohor Mafic Complex is an example. The gold occurrences associated with the Mpohor complex are somewhat unique in Ghana, however, these intrusives appear to have similar features to other deposits in the region. Much younger, north-trending diabase dykes are present in the vicinity of Takoradi. Despite the fact that these are usually quite narrow (up to about 30 m), they can be traced more or less continuously for 200 km. The dykes run from the coast to at least as far as Manso.

Structure, indicative of a zone of higher permeability, is a dominant controlling factor for
Deposition of gold from gold-bearing solutions in the Ghanaian gold belts. The most productive areas in the Birimian Supergroup are along the depositional boundaries between the belt and basin facies. The region is extensively faulted, as suggested by an assessment of satellite imagery, digital terrain topographic data, air photos and, to some extent, from an interpretation of airborne geophysical data, however more detailed structural analysis is required for a better understanding of the complex structural history of the area.

Outcrops are fairly limited, but rock exposures along the boundaries of some of the main volcanic branches have indications of extensive fracturing and it would appear that many of the major lithologic contacts are faulted. The dominant orientation of the regional fracture systems is NE-SW, although the western margin of the belt in the Axim district has many faults and fracture systems oriented N-S. Folding also plays a very important part in the structural control of ore bodies in the Ghanaian gold belts, but the significance of folding in the concession area has not yet been determined.

4.4 Property Geology

Exposures in the Edum Banso Concession area are quite scarce, however, extrapolation from the Aerodat airborne geophysical data as well as an interpretation of the airborne geophysics by Watson Geophysics and Dr. R.J. Griffins are enough to provide a good idea of the major rock types that can be found. The Edum Banso project is located in an area of Birimian metasediments, metavolcanics and intrusive rocks which are part of the Ashanti Belt.

Recent exploration works within the concession area have revealed that the rocks are basically metavolcanics, metasediments and intrusive such as diorite and granodiorite. The eastern part to the concession is predominantly metasediments, metavolcanics, and metavolcaniclastics. Dixcove Granitoids are most common in the western part of the property.

Four main types of rocks were identified in the Six (6) trenches dug so far which covers an average of 8km from the North East to the South West direction. The units are as follows:-

Tuffaceous phyllite: Predominantly fine grained, massive mottled whitish to yellowish brown to pinkish saprolite. Occasionally interbedded with carbon altered weakly foliated silicified phyllite. The unit exhibit very weak foliation normally parallel or sub-parallel to associated quartz stringers and almost invariably, moderate to steep dipping (65-88 deg), usually to the west.

Tuffs: Appear as mottled clay material with fine grained massive saprolite meta tuff inclusions.
Granodiorite/diorite: Looked dark grey in colour usually massive and coarse grained. Silica and chlorite alteration are very common. They look fresh inside but the outside is usually coated with either Manganese and/or iron oxide.

Quartz: They occur as veins, stringers and stock works. They are white to milky in colour and in some cases glassy to light grey. They measure from a few millimetres to 7m thick in trench EBTR003. The attitude of quartz found in trench 3 was 100/56 and another one associated with a diorite in trench EBTR006 was 208/68. Quartz boulders, pebbles and gravels are common and floats occupy every single space in the concession. They are common because they are hard and resist weathering. The veins found in all trenches are crushed in the shear zones and are found to be stained with iron and/or muscovite/sericite. In most trenches they usually occur as micro stringer or micro quartz stock works.
5 Exploration

5.1 Introduction

In a period of four months from August 2007 to January 2008 an exploration program was carried out on the Edum Banso concession. This work summarised in Table 2, consisted of gridding, soil sampling, prospecting, trenching and samples analysed.

Table 2: Summary of TAL Field Activities

<table>
<thead>
<tr>
<th>Summary of work done</th>
<th>Previous weeks</th>
<th>Cumu Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Cutting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>8.4</td>
<td>8.4 km</td>
</tr>
<tr>
<td>Gridline</td>
<td>73.8</td>
<td>73.8 km</td>
</tr>
<tr>
<td>Soil Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Samples Taken</td>
<td>1967</td>
<td>1967</td>
</tr>
<tr>
<td>Soil Samples Analysed</td>
<td>1161</td>
<td>1161</td>
</tr>
<tr>
<td>Rock Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grab Samples</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Auger sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Auger</td>
<td>264</td>
<td>264</td>
</tr>
<tr>
<td>Shallow Auger</td>
<td>736</td>
<td>736</td>
</tr>
<tr>
<td>Samples to Lab.</td>
<td>2453</td>
<td>2453</td>
</tr>
<tr>
<td>Trench excavation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Length</td>
<td>319.2</td>
<td>319.2 m</td>
</tr>
<tr>
<td>Volume</td>
<td>1254.4</td>
<td>1254.4 m³</td>
</tr>
<tr>
<td>Samples to taken</td>
<td>224</td>
<td>224</td>
</tr>
</tbody>
</table>

5.2 Gridding

Figure 8 represents an extract from part of Sheet 0502c3 and 0402a1 showing the gridlines. A reference point was established using old Newmont sample point 11600N 10300E which was not far from Edum Dominase to Edum Banso dirt road. In the process of establishing the new gridlines 100,000 was added to Newmont eastings (→10300E =110300E) this brought a huge contrast in the numbering system for the northing and the Easting which might confuse the geological assistant. The baseline was cut using a compass at 021 degrees magnetic over a total of 8.5 km. the concession was covered with 400m and 200m line spacing. The infill which in combination with the 2004 Newmont soil sampling at 400m spacing, provided detailed soil geochemical coverage (100m spacing) for the entire concession. The soil stations were established at 25m along each gridline for sampling. A total of 74km gridlines were cut.
The line cutting was done with up to 7 teams. Each team was led by an experienced geological assistant. All the gridlines were monitored with GPS readings picked at regular intervals. The readings were then plotted and any mistakes identified were corrected before the soil program commenced. Each sample point was marked with a well labelled wooden peg. Steel pillars were mounted on the baseline for future reference. Table 3 shows the location of the beacons. The datum picked for the GPS readings was **WGS 84 Zone 30N**.

Table 3: Location of Survey Beacons

<table>
<thead>
<tr>
<th>North</th>
<th>East</th>
<th>N_UTM</th>
<th>E_UTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>15000</td>
<td>110300</td>
<td>560765</td>
<td>621965</td>
</tr>
<tr>
<td>14600</td>
<td>110300</td>
<td>560333</td>
<td>621860</td>
</tr>
<tr>
<td>14200</td>
<td>110300</td>
<td>559938</td>
<td>621747</td>
</tr>
<tr>
<td>13800</td>
<td>110300</td>
<td>559542</td>
<td>621643</td>
</tr>
<tr>
<td>13400</td>
<td>110300</td>
<td>559171</td>
<td>621540</td>
</tr>
<tr>
<td>13000</td>
<td>110300</td>
<td>558792</td>
<td>621431</td>
</tr>
<tr>
<td>12600</td>
<td>110300</td>
<td>558413</td>
<td>621325</td>
</tr>
<tr>
<td>12200</td>
<td>110300</td>
<td>558031</td>
<td>621214</td>
</tr>
<tr>
<td>11800</td>
<td>110300</td>
<td>557651</td>
<td>621121</td>
</tr>
<tr>
<td>11400</td>
<td>110300</td>
<td>557247</td>
<td>621013</td>
</tr>
<tr>
<td>11000</td>
<td>110300</td>
<td>556865</td>
<td>620917</td>
</tr>
<tr>
<td>10600</td>
<td>110300</td>
<td>556451</td>
<td>620809</td>
</tr>
<tr>
<td>10200</td>
<td>110300</td>
<td>556069</td>
<td>620701</td>
</tr>
<tr>
<td>9800</td>
<td>110300</td>
<td>555687</td>
<td>620598</td>
</tr>
<tr>
<td>9400</td>
<td>110300</td>
<td>555293</td>
<td>620493</td>
</tr>
<tr>
<td>9000</td>
<td>110300</td>
<td>554917</td>
<td>620386</td>
</tr>
<tr>
<td>8600</td>
<td>110300</td>
<td>554528</td>
<td>620289</td>
</tr>
<tr>
<td>8200</td>
<td>110300</td>
<td>554148</td>
<td>620186</td>
</tr>
<tr>
<td>7800</td>
<td>110300</td>
<td>553776</td>
<td>620078</td>
</tr>
<tr>
<td>7400</td>
<td>110300</td>
<td>553387</td>
<td>619971</td>
</tr>
<tr>
<td>7000</td>
<td>110300</td>
<td>553005</td>
<td>619867</td>
</tr>
<tr>
<td>6600</td>
<td>110300</td>
<td>552626</td>
<td>619756</td>
</tr>
</tbody>
</table>
Figure 8: Edum Banso Gridlines
5.3 Soil Sampling

5.3.1 Introduction
The first pass of soil sampling was done using a classical digging tool called “soso” to a depth not more than 0.5m. After first pass has proved successful, an infill was carried out with a shallow auger to 1m depth. The former is a chisel like tool and the later is a locally made cutting tool made from used drilled rod with an extension up to 2m. The cylindrical sharp cutting edge is driven into the ground to recover the sample. The classical digging method yielded 1161 samples and the shallow auger produced 736 samples. Both includes blanks and duplicates. Points, which were over saturated with water, and areas, which fell within towns, were skipped. The topographical and geological descriptions of the sites and the samples were then logged on to a spreadsheet carried to the field. The mapping was conducted alongside with the soil sampling which took into consideration the relief (hill crest, slopes, valleys etc) in correlation to the soil type (elluvium, lateritic, colluvium and alluvium).

About 2.5kg of samples was collected into well labelled plastic bags with sample tickets. The sample bags were then sealed and bagged in large sacs for assaying. The sampling exercise was done with a team, which was led by a geologist with six to eight assistants (two diggers and two to three carriers) depending on the carrying distance. The entire sample holes were refilled immediately after the sample was taken. For quality control, field duplicate and blank samples were inserted in numerical sequence approximately after every twentieth sample taken. To avoid any contamination, only dry samples were taken.

5.3.2 Analytical Procedures
The samples were analysed by Transworld Laboratories at Tarkwa only for gold. The analytical procedure consisted of drying and jaw crushing the entire sample to particle size of ~6mm. The sample was then pulverized to 200# mesh size and then homogenized. 2kg of the homogenized soil sample was analysed for gold using BLEG analysis. The digestion period allowed was 24 hours with AA finishing.

5.3.3 Soil Results
The soil geochemistry produced sufficient surface expression of gold in soil over an area of 8km long and approximately 0.6km wide, which strike almost NNE. The soil geochemistry returned gold values ranging from <1ppb to 1099ppb. Approximately 7% of the data set returned gold values above 50ppb. Four areas (zone A, B, C and D) within the defined corridor were prioritised for deep auger. The image of gold in soil values are shown in Figure 9.

Zone A is the area to the north of Edum Banso from gridline 14700N to 15200N. Discrete gold anomalies within this area returned gold values ranging from 53ppb to 909ppb.
Zone B area is to the northeast of Edum Dominase from 11300N to 12100N. This area was selected to test Newmont gold in soil anomalies along gridline 11600N. Re-sampling of this line under the current exercise was very disappointing. The best assay results range from 46ppb to 218ppb.

Zone C is a small area to the eastern end of the concession, which returned very interesting results on 11300N. Three consecutive sample points recorded the following 1099ppb, 793ppb and 606ppb respectively.

The Zone D extends from southeast to the northeast of Trebuomu from gridline 8200N to 9900N. Discrete gold in soil values range from 50ppb to 199.5ppb.

Elsewhere, discrete anomalies were recorded which will warrant further prospecting around them. The laboratory analytical reports and the field log sheets are presented in Appendix I.
Figure 9: Interpreted Geology with Soil Geochemistry Results
5.4 Deep Auger

5.4.1 Introduction

As a follow up to the soil geochemistry, a deep auger program was initiated on the four selected areas to test the surface gold expression to the saprock or the saprolite zone. 252 sample sites were augered at 25m spacing. Some areas were further augered at 12.5m spacing. The whole program yielded some 264 samples including duplicates, blanks and standards. The auger results are presented over interpreted geology in Figure 10.

The deep auger is similar to the shallow auger. However, the rods were extended for deeper penetration up to 8m. In anticipation that some areas could be very difficult to auger a long rod like a spear was used to penetrate the lateritised or quartz scree layers that were encountered. One meter sample was then taken from the saprolite zone at the bottom of each hole. To avoid any contamination, only dry samples were taken. For quality control, field duplicate, blank and standard samples in numerical sequence were inserted at thirtyieth, sixtieth and ninetieth intervals respectively.

5.4.2 Analytical Procedures

The samples were analysed by Transworld Laboratories at Tarkwa for gold only. The analytical procedure consisted of drying and jaw crushing the entire sample to particle size of ~6mm. The sample was then pulverized to 200# mesh size and homogenized. The gold contents were determined by means of fire assay method. This method involved 50g sample being fluxed and fused in a furnace for 1 hour. The lead button was cupelled and the prill digested in Aqua Regia and read on atomic absorption for gold.

5.4.3 Results

The 264 deep auger samples returned gold values ranging from <0.01ppm to 1.75ppm. 19 out of the 252 samples processed had gold values in excess of 0.1ppm representing 7.5%.

In Zone A area, 8 out of 89 auger holes returned gold values ranging from 0.1ppm to 1.75ppm.

Zone B was very disappointing with consistently very low gold values. Approximately half of the data set of the gold returned values below detection limit (<0.01ppm).

Zone C to the east of Zone B on a single line presented an encouraging result at 12.5m spacing. 3 out of 16 samples returned the following values 0.14ppm, 0.36ppm and 1.42ppm.
Zone D returned somehow very low gold values. 7 out of 58 samples returned values ranging from 0.12ppm to 0.32ppm. The laboratory analytical reports and the field log sheets are presented in Appendix II.

Figure 10: Interpreted Geology with Deep Auger Results
5.5 Trenching

5.5.1 Introduction

Six trenches totalling 319 were excavated over deep auger anomalies in excess of 0.1ppm. Three of the trenches were on the Zone A area and another three on the Zone D area. Zone C could not be trenched due to rubber plantation which would require lengthy negotiation with the owner, hence that area was augered at 12.5m spacing. Results obtained from Zone B were so disappointing that no trenching was recommended. One trench in Zone A targeted a quartz vein which was perceived to be at a lithological contact.

All trenches were manually dug to a vertical depth of 4m. One or two long horizontal channel samples was taken from the north wall of the trenches about 0.1m above the bottom of the trench. All the trenches were orientated at 111° magnetic north. A total of 224 trench samples including duplicates, blanks and standards were analysed. Table 4 shows data on the trenches excavated. The samples were analysed for gold using the procedures that were used for the deep auger samples. However, Arsenic was also analysed for the trench samples using Aqua Regia.

Trenches excavated were mapped normally at a scale of 1cm to 1m. Trench logs and profiles were produced to cover all the trenches excavated.

Table 4: Location of Edum Banso Trenches

<table>
<thead>
<tr>
<th>Trench ID</th>
<th>East</th>
<th>North</th>
<th>Azimuth</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBTR01</td>
<td>621833</td>
<td>560847</td>
<td>110°</td>
<td>80.70</td>
</tr>
<tr>
<td>EBTR02</td>
<td>621969</td>
<td>560608</td>
<td>110°</td>
<td>54.50</td>
</tr>
<tr>
<td>EBTR03</td>
<td>621719</td>
<td>560473</td>
<td>110°</td>
<td>24.60</td>
</tr>
<tr>
<td>EBTR04</td>
<td>620386</td>
<td>555839</td>
<td>110°</td>
<td>25.00</td>
</tr>
<tr>
<td>EBTR05</td>
<td>620414</td>
<td>555636</td>
<td>110°</td>
<td>25.40</td>
</tr>
<tr>
<td>EBTR06</td>
<td>620102</td>
<td>555305</td>
<td>110°</td>
<td>109.00</td>
</tr>
</tbody>
</table>

Total 319.20

Torkornoo & Associates Ltd;
www.torkornoo.com
5.5.2 Trench Geology

The following briefly describes each of the six trenches commencing from the north.

Trench EBTR001: Predominantly fine grained, massive mottled whitish to yellowish brown to pinkish saprolite with minor micro quartz stringers. Occasionally interbedded with micro carbon layers.

Trench EBTR002: Mottled clay material with <5% fine grained massive saprolite meta tuff patches to weakly foliated fine grained yellowish brown tuffaceous phyllite with irregular quartz stringers. Between 45m to 48m is a whitish to yellowish massive felsic unit (dyke?).

Trench EBTR003: Grey colour, coarse grained massive, silica and chlorite altered, moderately silicified granodiolite with weathered silicified tuffaceous phyllite with mottled clay patches. Massive glassy to milky quartz vein about 7m thick. Alteration along the margins of veins is very common. Alteration consists mainly of silicification, chlorite and muscovite/sericite.

Trench EBTR004: Fine grained massive reddish brown tuff + patches of mottle clay material. No quartz vein.

Trench EBTR005: Fine grained, massive, pinkish brown, strongly weathered metavolcanic mafic (Tuff) + mottle clay patches. Irregular micro quartz stringers stained with iron oxide.

Trench EBTR006: Fine grained reddish brown, weakly foliated tuffaceous phyllite with minor limonitic bands. Grading to medium to coarse grained size, weak to moderately foliated, dark grey diorite material with glassy to milky quartz vein (0.11m thickness, striking 208 and dipping 68 to west).

5.5.3 Results

Table 5 is a summary of gold and Arsenic values and Figure 11 is a map showing the trench locations with gold values. The trench results were however, very disappointing as the high geochemical values from both the soil and the deep auger did not reflect in the immediate underlying rocks. It was also apparent that arsenic was absent. The laboratory analytical reports and the field log sheets are presented in Appendix III.
Table 5: Showing summary of Trench Results

<table>
<thead>
<tr>
<th>Trench ID</th>
<th>Host</th>
<th>Interval</th>
<th>Grade</th>
<th>Torkornoo & Associates Ltd; www.torkornoo.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBTR001</td>
<td>No significant gold values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBTR002</td>
<td>No significant gold values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBTR003</td>
<td>No significant gold values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBTR004</td>
<td>No significant gold values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBTR005</td>
<td>Tuffaceous phyllite with chlorite alteration</td>
<td>12-16</td>
<td>4</td>
<td>1.23, 17</td>
</tr>
<tr>
<td>EBTR005</td>
<td>Clay patches and limonite alteration.</td>
<td>18-20</td>
<td>2</td>
<td>0.43, 15</td>
</tr>
<tr>
<td>EBTR006</td>
<td>Strongly silicified, fine grained, brown, weakly foliated meta tuff.</td>
<td>72-73</td>
<td>1</td>
<td>0.52, <5</td>
</tr>
</tbody>
</table>
Figure 11: Interpreted Geology with Trench Location/Grade
5.6 Rock Sampling

Reconnaissance mapping was carried out alongside the soil sampling. The laboratory analytical reports and the field log sheets are presented in Appendix IV.

The 68 rock chips analysed returned gold values ranging from <0.01ppm to 3.60ppm. The rock chips have confirmed the presence of gold mineralization at contact of the Mophor complex and the metavolcanics. One of the rock chips returned a gold value of 3.60ppm along the contact of the Mophor complex and the Birimian metavolcanics (see Figure 12).

Figure 12: Interpreted Geology with Rock Chip Grade
5.7 Field Quality Control

Samples taken in the field were handled in such a way as to eliminate all manner of contamination in the field, through transportation, and delivery to the laboratory. Blanks, duplicates and standards were inserted, as described in previous sections of this report, to determine the relative accuracy of laboratory readings. The readings for these control samples are summarised into tables and graphs in Appendix V.

The plots show the gold values returned from the laboratory on the Y-axis and the sample ID and corresponding Job number on the X-axis. The first three graphs represent soil duplicates, trench duplicates and auger duplicates. And the final two represent known standards.

The assay results of the original and the duplicate samples for soil geochemistry, trench, and auger show a generally good correlation. However, the correlation between sample number I0509 and its duplicate I0510 of Job number XGE8271 for the soils indicate a weak correlation which could be an isolated case of possible contamination at the laboratory.

The standards returned an almost perfect correlation as indicated by the plots for both trench and auger samples.

Thirty (30) blanks were taken from Accra plains. Twenty seven of them returned gold values below the detection limit, as expected, with the remaining three recording values of 1ppb, 3ppb and 6ppb which are very negligible.

It can be concluded therefore that the quality standards of the laboratory are good and acceptable.
6 Conclusion

The rocks underlying the Edum Banso concession have undergone alteration and shearing, which is commonly associated with gold mineralization. Alteration along the margins of veins is very common. Alteration consists mainly of silicification, chlorite and muscovite/sericite. There appears to be numerous types of pre-metamorphic intrusives throughout the area. Some of these intrusives found in trenches could be interpreted as mafic (diorite or granodiorite) intrusives. The interpreted geology from the Aero data image of Potassium for the Edum Banso Concession shows that the circular mafic Mpohor Complex extends south into Golden Star’s adjoining Hwini-Butre Concession where significant gold mineralization has been found.

It has also been established that within the vicinity of the circular mafic Mpohor Complex, the work carried out by TAL revealed the following: The soil program returned gold grades of 1099ppb, 793ppb and 606ppb; deep auger on the soil revealed 1.42g/t; One trench over 4m revealed 1.23g/t, and further south, a rock chip revealed a grade of 3.6g/t (See Figure 13 and Figure 14).

Thus the results of the prospecting work undertaken by TAL on behalf of Xtra-Gold provides more than sufficient evidence that the license area is predominantly underlain by the Mpohor complex, the dixcove granitoid and Birimian metavolcanics which could host auriferous ore body of economic significance.

7 Recommendations

- It was apparent from the trench assay that Arsenic is generally absent and as part of the planned exploration work, it will be necessary to evaluate the effectiveness of the MMI (mobile metal ions) soil geochemistry method. If this method proves effective, it may substantially reduce the need for pitting and trenching and may define bedrock drill targets more effectively than current methods.
- Continue prospecting for rock chips along the Mpohor Complex Arc.
- Continue deeper augering for the strike extension of the anomaly at Zone C and the south extension of Zone D
- Structure interpretation of the Edum Banso Concession should be carried out
Figure 13: Prospective Areas over Interpreted Potassium Image

- Deep auger 1.42g/t
- Trench 1.23g/t@4m
- Rock chip 3.6g/t
- Soil values 1099 ppb, 793 ppb & 606 ppb
- Father Brown / Dabokrom Deposits

XTRA-GOD GHANA LIMITED

EDUM BANSO PROJECT
WESTERN REGION GHANA
Interpreted Potassium Image with Gold Prospects
Figure 14: Prospective Areas over Interpreted Aeromagnetic Image

- Deep auger 1.42g/t
- Trench 1.23g/t@4m
- Rock chip 3.6g/t
- Soil values 1099ppb, 793ppb & 606ppb
- Father Brown /Dabokrom Deposits

Torkornoo & Associates Ltd;
www.torkornoo.com
8 Exploration Program Proposal

The following program proposal and budget estimate for the next 4 months is submitted for consideration for further work on the Edum Banso Project to well define the anomalies along the Mpoohor Complex Arc.

Continue augering on the following lines at 20m spacing. This will require approximately 15km of line cutting.

<table>
<thead>
<tr>
<th>Gridline</th>
<th>Metres</th>
<th>Samples</th>
<th>Dup</th>
</tr>
</thead>
<tbody>
<tr>
<td>11400</td>
<td>500</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>11200</td>
<td>500</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>10600</td>
<td>600</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>9400</td>
<td>400</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>9200</td>
<td>400</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>8700</td>
<td>600</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>8600</td>
<td>500</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>8500</td>
<td>500</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>8400</td>
<td>500</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>8300</td>
<td>500</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>7000</td>
<td>400</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>5400</td>
<td>270</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Further to this, an oriented survey for possible MMI program will be carried out. In this program about 10 soil samples will be collected on 11300 where the three impressive soil values were obtained and over the trench EBTR005 area. These samples will be tested for the full range of MMI elements including gold. Investigations made from both the former St. Jude and Golden Star was that they have never conducted MMI program over Whini-Butri and other surrounding concessions.

When this proves successful, an area of about 6km long and 600m wide along the Mpoohor Complex Arc within the Edum Banso concession will be sampled on 200m by 20m grid. This will yield some 900 samples for MMI analysis. Three to five MMI elements that will show strong correlation with gold will be analyzed. It is estimated that about a third of the MMI sample sites will be augered (300 sites).

Trenching was not considered as an option simply because the investigation I made form St. Jude, Golden Star and from trenching carried out so far, it is apparent that trenching usually does not confirm the high gold values usually obtained from soil geochemistry and augering.

Prospecting and detailed mapping will also continue with about 50-100 good rock samples expected.

Utilising all results available, a conceptual model of possible drill target will be
generated.

During the process of carrying out the above proposed programs, an appropriate database would be maintained.

Obligations governing the socio-environmental factors such as the establishment of a good working relationship with chiefs, elders and people of the traditional area, and protection of the environment which may be affected by exploration operations, will be observed and acted upon in accordance with Ghanaian legislation.

Summary

Step 1
- Line cutting 15km
- Deep auger 270 samples
- Duplicate 11 samples
- MMI orientation 10 samples
- Rock chip 100 samples

Step 2
- Line cutting 24km
- MMI 900 samples
- Duplicate 100 samples
- Deep Auger 300 samples
- Duplicate 30 samples

Prospecting Activity Chart

<table>
<thead>
<tr>
<th>Activity/Month</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Line Cutting</td>
<td></td>
</tr>
<tr>
<td>Hand Auger</td>
<td></td>
</tr>
<tr>
<td>MMI Sampling</td>
<td></td>
</tr>
<tr>
<td>Lab. Analysis</td>
<td></td>
</tr>
<tr>
<td>Geological Mapping</td>
<td>Y</td>
</tr>
<tr>
<td>Monthly Report</td>
<td>Y</td>
</tr>
<tr>
<td>Data Interpretation</td>
<td>Y</td>
</tr>
<tr>
<td>Final Report</td>
<td>Y</td>
</tr>
<tr>
<td>Resource</td>
<td></td>
</tr>
</tbody>
</table>
Proposed Budget Estimate

<table>
<thead>
<tr>
<th>Cost Centers</th>
<th>Months</th>
<th>Number</th>
<th>Amount(US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Geological supervision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snr. Explo geol.</td>
<td>3</td>
<td>1</td>
<td>10,500.00</td>
</tr>
<tr>
<td>Explo geol.</td>
<td>4</td>
<td>1</td>
<td>9,600.00</td>
</tr>
<tr>
<td>2. Labour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technicians</td>
<td>3</td>
<td>4</td>
<td>10,920.00</td>
</tr>
<tr>
<td>Locals as casuals</td>
<td>3</td>
<td>20</td>
<td>15,600.00</td>
</tr>
<tr>
<td>3. Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hired Vehicle 4x4 truck</td>
<td>3</td>
<td>1</td>
<td>7,200.00</td>
</tr>
<tr>
<td>Drivers</td>
<td>3</td>
<td>1</td>
<td>1,350.00</td>
</tr>
<tr>
<td>Fuel</td>
<td>3</td>
<td>1</td>
<td>3,150.00</td>
</tr>
<tr>
<td>4. Additional Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop Compensation</td>
<td></td>
<td></td>
<td>2,000.00</td>
</tr>
<tr>
<td>Logistics materials, tools, equip, safety kits etc.</td>
<td>3</td>
<td></td>
<td>8,000.00</td>
</tr>
<tr>
<td>Food Geos</td>
<td>3</td>
<td></td>
<td>3,000.00</td>
</tr>
<tr>
<td>Accommodation Geos</td>
<td>4</td>
<td></td>
<td>4,000.00</td>
</tr>
<tr>
<td>Accommodation & Food Technicians/Drivers</td>
<td>3</td>
<td>5</td>
<td>3,000.00</td>
</tr>
<tr>
<td>Assay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td></td>
<td>78,320.00</td>
</tr>
<tr>
<td>Administration + Other Expenses + Protocol</td>
<td>10%</td>
<td></td>
<td>7,832.00</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td></td>
<td>86,152.00</td>
</tr>
</tbody>
</table>

Sample Analysis not included